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432 700 Russia 

Received 7 May 1993, in final form 25 August 1993 

Abstract A dispersion relation is derived for the collective oscillation mode in a strongly 
correlated electron system, described by a single-band lattice Hubbard model On the basis of 
Le equations of motion for a pair of propastors (one- and two-electron causal temperature 
Green functions), a self-oscillatory condition is formulated and obtained by the same technique 
as the superconductor susceptibility to a variable external field. The equations of motion 
ace subdivided into a stationary pan and an oscillatory pan. ?he stationary pan establishes 
a self-consisted relation between the chemical potential and the occupancy numbers of the 
thermodynamic equilibrium state, and it can be applied to any variously ordered apriori ground 
state. The oscillatory part yields a dispersion relation for the collective oscillation mode. and it 
is considered for a system with translationally invariant ground state. 

1. Introduction 

The aim of this work is to present a theoretical method for the calculation of the dispersion 
relation between frequency and wavevector of a collective boson-type oscillation mode 
in a strongly correlated electron system. We denote this relation by " ( q )  and call 
this collective mode a correlation oscillation to distinguish it from a plasmon oscillation 
(Moliver 1989, 1991). 

When dealing with collective electron phenomena, the theory of mcor(q) should be 
compared with the well known plasmon one. Essential differences between the two types 
of oscillations-correlation and plasmon-may be seen from the following. Plasmons can 
be excited in any system of charged particles owing to the long-range Coulomb interaction 
between a particle in site j and the macroscopic charge density near site i: 

0,d 

The fingerprint of a strongly correlated system is the short-range electron-electron 
interaction of the Hubbard form 

where creation operator c+ and occupancy operator n are written in the basis of site (i) 
and spin (U) wavefunctions. While interaction (1) may be treated by perturbation theory, 
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2226 S S Moliver 

interaction (2) cannot be taken as a perturbation in a strongly correlated system; rather it 
must be held in the unperturbed Hamiltonian. 

Since the problem of the ground state of a strongly correlated system is as yet unsolved, 
we would not like to mix it with the present theory of ow&): so, we assume the averages 
(c2,*,ci,,) of the grand canonical ensemble (with temperature T and chemical potential p )  
as a priori parameters. As an advantage, our method can be applied to variously ordered 
ground states, giving new opportunities to the experimental studies of ordering in strongly 
correlated systems. 

2. Temperature Green fundions equations of motion 

We consider a simple single-band Hubbard lattice model in order to achieve analytical final 
equations for mm,(q). In the several-hand case some steps (see section 4) can be made 
numerically, but the final result is also achievable in the form of a computational procedure. 
Besides (2). the single-band model includes (Doniach and Sondheimer 1974) 

The one-electron effective lattice potential (or the so-called hopping integral) has either a 
site (ij) or a wavevector k representation (k belongs to the Brillouin zone) 

In order to have a ground-state-independent temperature method, we proceed with the 
temperature-ordered (causal) Green functions (Abrikosov et al 1963) 

where T is an ‘imaginary time’ variable in the Heisenberg representation of operators 

C(T) = eHrce#‘ 0 < r < T-’ (6)  

Tr is the ordering operator and T is temperature. The equation of motion for the usual 
one-electron propagator ( 5 4  contains both functions (5a) and (5b), while the equation of 
motion for (5b) would contain some two-electron propagators, different from (5b) itself, if 
one does not make some assumptions. This therefore introduces the possibility to express 
all two-electron propagators, except (5b). through ( 5 4  and the proper bonding parameters 

G d ( t )  = G&CZ, r + 0) = k:,*n(r)cio(r)) ( 7 4  

(76) 

(Bonding parameters (7a) with i = m are occupancy numbers.) Since we are going to study 
a system with macroscopic oscillations (section 3), we save argument r in (7). indicating a 
lack of time invariance. 

* Aim@) = AL(5, r+O) = (C,+,*t,(t)Ci.(T)ni.-o(r)). 
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In his pioneer work Hubbard made an assumption, which may be called ‘a Hartreetype 
msatz’ (Hubbard 1963). For one of three analogous terms it reads 

t(yij)ct-,,(r)cim (r)Cm,-.(r) t ( ~ i j ) G i ( ~ ) c m , - o ( ~ ) .  (Sa) 

Hubbard pointed out that ‘whatever approximations are made in . . . [the terms of type 
(Sa)], one will obtain a theory that goes over into exact solution in the zero bandwidth 
limit’. (This limit If(rij)l << U we call strong correlation.) Instead of (8a) we propose a 
‘Hartree-Fock-type msatz’ 

t ( y i j ) c , , - ~ ( s ) c i ~ ( r ) c ~ , - ~ ( r )  N t ( ~ i j ) [ ~ i ( r ) c ~ , - ~  (r)  - G:i(r)ciu @)I. 

We think that (8b) generalizes (8a), making use of those bonding parameters which involve 
two different atomic sites; and that (8b) in the strong correlation limit plays the same role 
as Hubbard’s resonance broadening and scattering corrections, made in order to improve 
results based on (Sa) and analogous approximations (Hubbard 1964). As we remarked 
earlier, we keep values of the bonding parameters (7) outside the framework of the present 
theory. They should be calculated or guessed by some other means; however, this must be 
done self-consistently with the chemical potential p (see section 3). 

After linearization (8b) and wavevector transformation, the equations of motion for 
Green functions (5) become: 

(8b) + 

(; + E o  + 4 - p G : , ~ + ~ ( T ,  5‘) + uA2,k+q(r, 5‘)  = -s(s - r‘)s+s(q) 

It is clear that equations (9) simply reflect the structure of decoupling (8b), and thus 
the formalism itself does not depend on the particular scheme chosen, (8a) or (8b) or some 
other, though the final solution depends of course on the decoupling. Since the goal of this 
paper is not to compare different decoupling schemes and their consequences, but rather 
to demonstrate the work of the equations of motion formalism with respect to collective 
oscillations dispersion relation, the choice of decoupling is not significant. We simply 
choose the more general one-(8b). 

Equations (9) seem to be useful in the investigation of different collective modes, 
excited states and susceptibilities to external fields (the last opportunity can be realized 
after adding the proper interaction function to the diagonal coefficients before Gi,ktq(r, r’) 
and Ai,k+q(r, 7’) on the left-hand side of (9)). Working with (9) does not need any 
elaborate method, because in its smcture (9) is analogous to the well studied equations 
in the theory of superconductivity. The self-oscillatory condition is obtained from (9) in 
the next section by the same technique as for superconductor susceptibility to a variable 
external field (Abrikosov et a1 1963). 
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3. Self-oscillatory condition 

We shall develop a theory of wcM(q) by the following reasoning. Suppose that an 
infinitesimal external force of frequency w is applied to the system, and this is accounted 
for in (9) after analytical continuation of time-dependent propagators onto temperature 
propagators by w + io. Then the solution of (9) can be constructed as a superposition 
of stationary functions (Go, Ao) and small oscillatory functions. It is important that the 
stationary functions depend on the difference (5  - 5’); therefore 

(loa) 

(lob) 

The formulae for Green functions A (5b) and for bonding parameters (7b) are similar. 
Inserting (10) into (9) and making use of the smallness of oscillatory parts in (lo), one 
obtains linear equations for G’ and A’. Suppose that from these equations a value iw = om, 
and a value of q can be extracted, for which values solutions G’ and A’ become indefinite 
and, consequently, independent of the external force. It would mean that the electron system 
has a collective oscillatory mode, which exists, after it has been excited, without support 
of the external field. So, we conclude that frequency wCor and wavevector q, found in such 
a way, belong to the self-oscillatory collective mode. We name a relation, which yields 
wmr(q), a self-oscillatory condition. (The damping constant of the oscillatory mode also 
may be estimated, if one takes account of those non-linear terms, which were considered 
as small, when subdividing (9) into stationary and oscillatory equations.) 

Equations (9) require application of Fourier-transform formalism. Since both 
propagators (5) have the fermion commutation type, their 0-5 Fourier transform must 
contain the fermionic frequencies (odd) 

G&+& 5‘) = G,,,+,(r 0;t - r‘) + GAik+q(r - r’)exp[-fio(r + 5‘)l 

G&+q(r) = Gt,k+q(r. r + 0) = G,,,+J-O) O* + G~~k+n(-O)e-iwr. 

w n = ( 2 n + I ) n T  n = O , f l , f 2  ,... (1 la) 

f ( s - r ’ ) = T C e x p [ - i w , ( r - s ’ ) ] f ( w . )  f = G o , A o , G G , A .  (llb) 

As to the oscillatory functions in (loa), their Fourier frequencies w; must obey fermion 
condition (lla) in combination with w: 

w. 

- iw.(r - 5‘) = -iwL(r - 5’) - $iw(r + r’). (12b) 

Since 5 and r’ in (12b) are independent variables, r must be a bosonic frequency 
(o = 2 n o ~ T  in accordance with the macroscopic character of the external force used 
in previous reasoning about the self-oscillatory mode). From (llb) and ( 1 2 )  it must be 
concluded that frequencies of oscillatory functions G’ and A’ are neither fermionic nor 
bosonic, but have a mixed character: 

wh = (2n + 1 + no)nT n = 0, fl, f2,. . . , w = ZnonT. (13) 



Collective oscillations in strongly correlated systems 2229 

With the help of (1 1) and (12) one can take the motion equations (9) apart, subdividing 
them into stationary and oscillatory parts. Neglecting all terms containing GI and A', we 
get a stationary part: 

(-io. + E O  + fk - f i )GFk+ , (d  + UA&., (wd = --8+8(q) 

Self-oscillatory equations (15) are basic for o,,(q) calculation. According to the 
previous reasoning, we have to find a condition for o and q such that equations (15) give 
an indefinite solution. Suppose stationary propagators are known. Then we can express 
stationary and oscillatory functions of T ( lob)  by the reciprocal Fourier transform as 

and can subdivide (7) into stationary and oscillatory bonding parameters 

1 
f ,  = E Cf&+q(-O) f = Go, A', G ' ,  A', 

k 

We conclude that if we reduce equations (15) to a linear system with unknown oscillatory 
bonding parameters GIt, GI-, A'+ and A'-, defined by (17), then we obtain the self- 
oscillatory condition as an equality of the system's main determinant to zero. 

In order to derive the self-oscillatory condition from (15). we have to know stationary 
propagators GYk+,(o.) and AYk+9(on). which may be obtained self-consistently from 
(14) and (16). The loop of the self-consistency starts with the initial a priori guess for 
Gifk+q(-O). Then linear system (14) is solved, giving energy spectrum &i(k, k + q)  and 
propagator GFktg(on), both quantities depending on f i  and T.  After that, summation (16) 
is performed, and from here the loop of self-consistency begins again. 

Thus, we have in principle two possibilities: 
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(i) We can iind a value of p consistent with a priori chosen bonding parameters. 
(ii) On the other hand, we can make bonding parameters consistent with the value of p 

chosen in advance. 

We make a note about this item. Of course, equations (14), written on the basis of (Sb), 
do not describe exactly all the possible phases of strongly correlated systems. However, 
(14) is valid for any set of bonding parameters GFk+n(-O), which defines sufficiently a 
systems' ordering and other thermal equilibrium properties. Applying approach (i) to the 
exact set of G'&+J-O). we get from (14) a value of p that may be in poor agreement 
with the exact theory. We can take the discrepancy of p as a measure of error of (14H15). 
Another situation can be imagined, when the precision of the p value is more important than 
precision of some GPk+J-O) values. For example, p may define a metallic or insulating 
occupancy. In such a case we apply approach (ii) and find from (14) a self-consistent set 
of bonding parameters for given p and occupancy. The discrepancy of the density of states 
or some other quantity, connected with GF,+n(-O), may estimate the error of (14)-(15). 

4. Self-oscillatory condition for a system with a translationally invariant ground state 

Simple systems must be studied first, so we shall apply (14) and (15) to the case of a 
system with a translationally invariant ground state, i.e. we assume that stationary bonding 
parameters depend only on inter-site distance 

So in this case we define a stationary state with a pair of siteindependent occupancy numbers 
Go" = (cLcj*,,t,) and chemical potential p (at temperature T). 

It may be noted that another interesting case would be a system with a charge or 
spin-wave ordering: 

* GE+9(-O) = GE_q:S(q - Q). (19) 

For the remaining part of this paper we consider case (18) only, and presume that the system 
obeys (14) in thermodynamic equilibrium. 

GF(-O) = G,, O* exp(ir:jQ) 

Substituting (18) into (14) yields the stationary propagator 

(20) O i  G, (U,) = I ~ ~ ( 4 I / I O & J I  

where 4 x 4 matrices in determinants of denominator and numerator can be obtained by 
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(After changing its first or second column by d, as arrows in (21) show, &(E) transforms 
into D ; ( E )  or D;(E).)  Energy poles of (20) are 

4 

IDk(E)I= n [ E - E m ( k ) + P ]  (224 
ffl=l 

0- I f 2  

Self-consistency of Go* and p is established by substituting (20) into (17): 

E m ( k )  = E O  + ((I + t k ) / 2 f  [(U - tk)'/4 + utk(Got & G )] . (226) 

Frequency summation in (23b) is performed by the well known formula of the temperature 
Green function theory (Abrikosov er al 1963) 

Applying (24) to (23b), one must remember that energy spectrum (22b) may be doubly 
degenerate in some k-points, because of the second i sign in (226). For the case of non- 
degenerate set [ E I ( ~ ) )  frequency summation in (236) is easily performed by (24), giving 

If degeneracy occurs, then indefinity 0/0 arises in (25). We treat this case in the appendix. 
Using matrix expressions (20) and (21) we reduce (15) to the self-oscillatory condition 

after changing its unknowns from propagators G&+q(w;) to bonding parameters Gi*. 
First we exclude substituting the first equation (15) into the second. Applying 
translationally invanant case conditions (18) we obtain 

- U II 1 Ut&?+ - &(io; + io/2)Y(io; + io/2) -Ut!&'- 
-U tb Go- UtkG'K - &(io; + iw/2)Y(ioA + iw/2) 

(26) 
-1 - tkGOk++s(WA - W / 2 )  tkG:&(OA - 0/2) 

-t&.&,(:9(0; - O / Z )  1 +tkG$,,(W; - 0 / 2 )  11 I/ $ I/ 
where we write the same auxiliary functions &(E) and Y(E) as in (21). We note that the 
2 x 2 matrix on the left-hand side of (26) has a determinant equal to 1Dk(iwL +iw/2)I-this 
will appear in (28b) through the inverse matrix as 
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It is clear that frequency and wayevector summations (16) and (17) can be performed in 
(26), if we express the vector of propagators on the left-hand side of (26) through the vector 
of bonding parameters on the right-hand side. We do it with the help of (27) and (20). The 
result is 

The 2 x 2 matrix Ak(ioL + iw/2) is derived in the course of matrix inversion (27) of the 
left-hand side of (26): 

The 2 x 2 mahix Bkp(imA - io/2) is obtained after incorporating (20) into the matrix of 
the right-hand side of (26): 

The self-oscillatory condition comes out strictly from (28) as a condition for the non-trivial 
indefinite solution of the linear system with unknown oscillatory bonding parameters (17) 
as the equality of the main 2 x 2 determinant to zero: 

Rkq(io) = T Rkq(iwh. iw) (316) 
0'. 

where I is the 2 x 2 unit matrix. 
The task of frequency summation in (31b) resembles the previous one (23)-(25). The 

energy poles in (316) are io; = E,@) - io/2 and io; = ~ , ( k  + q )  + iw/2 (see (286) and 
(224). Thus we have to express the frequency sum (316) through terms of the type (24): 

Applying (32) to the summation in (316) after substitution (28b), we get the final formula. 
which we write here for the case of non-degenerate one-electron spectrum (22) in k and in 
(k + q) points: 
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with 

Em = Em(k) EL,  = &r(k + q), 

Analytical continuation w + i o  in (31b) becomes a mvial change of argument after applying 
(32). We have done this change in (33). Degenerate cases are considered in the appendix. 

The self-oscillatory condition (31a) has the form of a determinant equation on 
wavevector p and frequency om --t io. This condition describes a system with 
translationally invariant ground state, characterized by a pair of occupancy numbers G'. 
The kernel matrix (33) of the self-oscillatory condition shows a close resemblance to the 
analogous plasmon expression (Doniach and Sondheimer 1974). Consider the left-hand side 
of (314 as a function of frequency. It is seen that there is a quasi-continuum of poles, 
which describes one-electron excitations: wkq = .zm(k) - ~ ( k  + q).  But when o exceeds 
the upper limit of o b p r  the left-hand side function of o in (31a) becomes analytical, and 
(314 can be solved rather easily, because it does not need any self-consistent procedure. A 
solution om, of (31a) at a given q (if it exists), which is split off from the continuum ob. 
is a frequency of the collective mode, as was formulated in section 3. 

Equation (31a) is more convenient for a numerical solution than for an analytical 
one. The calculations were performed by the author and will be described in section 5 
in connection with possible experimental evidence. In order to illustrate the behaviour 
of o,,(q) as it follows from analysis of the denominator of (33), we attract the reader's 
attention to figure 1 with the graph of determinant from (31a) as a function of i o  (the 
intersection with the horizontal line gives a graphic solution for owr). 

5. Possible experimental evidence 

In this section we try to explain some spectroscopic data on the surfaces Si(l11)I x 1 
and 7 x 7 on the basis of the assumption that correlation oscillations occur in this two- 
dimensional electron system of dangling bonds. The strongly correlated character of pure 
Si( 11 1) in its 1 x 1 and 7 x 7 reconstructions is well established. For example, it was shown 
theoretically that the 1 x 1 phase is unstable with respect to charge- and spin-wave ordering 
transition, while a strong one-site correlation of dangling-bond electrons is the main cause 
of this behaviour (Muramatsu and Hanke 1984). The experiments proved that the electron 
structure of both 1 x 1 and I x 7 reconstructions may be described by the Hubbard model 
with insulator occupancy over a wide temperature range (Yokotsuka et al 1983). 

We want to discuss some results of ARUPS (angleresolved ultraviolet photoemission 
spectroscopy), H E E L S  (high-resolution electron-energy-loss spectroscopy), inverse photo- 
emission (bremsstrahlung spectroscopy) and optical response spectroscopy. 

An energy-loss peak was found on Si( 11 1)7 x 7 with wide dispersion (from 1 to 1.8 eV) 
in the Brillouin zone, and was assigned to electron transitions between a pair of surface- 
state bands (Layet et a1 1984). The average energy-loss value agrees with one of the 
surface-state band transition energies, which have been measured by ARUPS for occupied 
bands (Uhrberg et al 1985) and by inverse photoemission for the empty band (Himpsel 
and Fauster 1984). Meanwhile, ARUPS had not shown any dispersion of the occupied 
surface-state band comparable with 0.8 eV dispersion of the HREELS peak. Therefore, the 
mechanism of the surfaceband transition does not seem to be a very good explanation of 
H E E L S  data considered. On the other hand, energy-loss spectra usually contain collective 
excitation modes (such as plasmons), while ARUPS naturally does not. Thus, it seem 
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Figurr 1. Graphic numerical solution of dispersion relation (31a) for B two-dimensional 
perfect triangular lanice with lranslationally invariant. paramagnetic ground state at different 
temperature T. Wavevector q of a solution was fixed at ule K-point of the Brillouin zone 
(shown near the graph, the irreducible pm is shaded). The parameters of the model gave a 
paramagnetic. insulating ground state GDL = If?, EO = - I  eV, p = 0, ?(TI)) = t = 0,0125 eV 
for the nearest-neighbour sites i ,  j .  Chemical potential was Situafed in the Hubbard energy g3p: 
Ip - ~ i ( k ) l  > 0.39 eV. The shaded area in the graph shows the continuum of one-elemon 
excitations ok,, d 1.54 eV. Correlation parameter U may be considered as the energy scale of 
the model: its value is shown by the vertical dashed line, 

reasonable to test the correlation oscillations mechanism for the broad-dispersion HREELS 
peak of Si( 11 1)7 x 7. 

We have performed non-self-consistent calculations of wmr(q) in order to prove two 
items: 

(i) that w,(q) may have the same order of value as HREELS shows for Si(l11)7 x 7; 
and 

(ii) that the dispersion of w,,(q) may be wide, while the one-electron band tk (3H4) 
is narrow. 

The details of the calculations were published previously (Moliver 1991). The model 
was considered with a translationally invariant, paramagnetic ground state: Go* = 1/2. The 
correlation parameter was chosen according to the model of Si(ll1) (Louis e t d  1982, 1983): 
U = 1.43 eV. The nearest-neighbour approximation was applied with different values of 
f = 0.0125 to 0.1 eV. The chemical potential p was placed non-self-consistently in the 
middle of the energy gap between Hubbard bands (226). Then o,,(q) was calculated along 
high-symmetry directions of the Brillouin zone of the perfect triangular two-dimensional 
lattice, and both propositions (i) and (ii) were proved (figure 2) .  



Collective oscillations in strongly correlated system 

2.90 - 

-2.40 - B 
3= 
v 

n 
v 
k 
3- 

1.90 - 

1.40 
K 

9 
r 

2235 

U 

Figure 2. Band diagram of correlation oscillation mode along the boundaries of the irreducible 
part of the Brillouin Lone. The shaded area shows frequencies and momentum transfers of 
Hubbvd interband transitions according to 

Temperature T = 0.00025 eV = 3 K; other parameters are the same as in figure 1. Horizontal 
dashed line shows the energy scale of the model U .  

The calculations also showed that the temperature behaviour of the correlation oscillation 
frequency has the character of a phase transition: at T + (Tc - O), wcor(q) + CO, while 
at T & oscillations do not exist. The critical temperature T, depends on the bandwidth 
and varies from T, N 2t for t N 0.0125 eV to T, N 0.041 eV for t > 0.075 eV (figure 3). 
The occurrence of the critical behaviour, the range of Tc, the dependence of T, on a single 
parameter of the Hubbard model U / t ,  all these properties of wmr(q) may be considered as 
reflecting the situation with the reconstruction transitions 1 x 1 ct 7 x 7 on Si(] 11) and the 
interpretation of these transitions with a single-parameter Hubbard model (Yokotsuka et al 
1983). 

In HREELS experiment on Si(111)7 x 7 the width of the elastic scattering peak tail (near- 
elastic energy losses) was explained by multiple dipole scattering from surface plasmons, 
created by electrons of an extremely narrow surface-state band (width of the band 1 meV, 
effective m a s  60m) (Persson and Demuth 1984). It seems impossible to exclude many- 
electron effects from such a narrow-band model, so the idea of scattering from correlation 
oscillation excitations was tested (Moliver 1991). We estimate the probability of the single 
scattering process with energy loss E and momentum transfer p from the previously excited 
correlation oscillation as 
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graphicalii. (vertical dashed line shows energy scale of the model U/loO.) (b)  Phase diagram 
of correlation oscillation regime for a strongly correlated system with kanslationally invariant. 
paramagnetic gmund state. In the area under the phase line the correlation oscillations may 
be excited, in the area above. oscillations do not exist (equation ( 3 1 4  has no solution). The 
parameters of the model (except 1 )  were the same as in figures 1 and 2. The wavevector q was 
fixed in the K-point of the Brillouio zone. The whole phase plane corresponds to the insulating 
ground state: 2T < 0.1 eV << 0.39 CV < la - Ei(k)l. 
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and found, considering the calculated spectrum of omr(p). that (34) has a logarithmically 
wide tail at near-elastic conditions of HREELS experiment E -+ 0, p + 0 

Since the incident electron beam in HREELS has enough energy to excite the correlation 
oscillations, the scattering process (34) can occur, and quasi-elastic energy losses may be 
analysed using dipole scattering theory (Persson and Demuth 1984) together with (35). 
which does not need unrealistic surface-state band parameters. 

Recently several singularities were found in the Si(111)7 x 7 optical reflectance 
spectrum, which were explained by electron surface-state inter-band transitions (Alameh 
and Borensztein 1991). One of these optical response singularities (at hv = 1.8 ev) 
coincides very well with the HEELS energy-loss peak, discussed above (Layet et al 1984, 
Persson and Demuth 1984), but the other one (at hv = 2.5 eV) is completely absent 
in HREELS. This corresponds with the correlation oscillation explanation of HREELS peak 
proposed above, because the efficiencies of collective mode excitation and of one-electron 
transition stimulation by incident electron must be different. In fact, EELS is well known 
for its high sensitivity to bulk and surface plasmon collective modes. 

6. Conclusion 

A strongly correlated electron system has a collective oscillation mode of bosonic type. Like 
a plasmon one, this mode shows itself through oscillations of occupancy numbers and other 
bonding parameters (7a) and (lob). Unlike for the plasmon mode, the electron density of a 
collective correlation mode cannot be considered apart from the two-electron (correlation) 
thermodynamic averages (7b). The dispersion relation between frequency and wavevector 
of the collective correlation mode has been found from the self-oscillatory condition, applied 
to the Green functions equations of motion. 

The closed form of the equations of motion and the consequent self-oscillatory condition 
have been developed for strongly correlated system (the tight-binding bands of which are 
much more narrow than the one-site correlation energy). In order to produce the self- 
oscillatory condition, different cut-off methods may be applied to the series of equations 
of motion (section 2); several-band models may also be treated in a similar way as the 
singleband model has been (section 3). 

For the strongly correlated system (18) with translationally invariant ground state, the 
self-oscillatory condition (31a) has a form similar to the plasmon one, but the structure 
of the kernel is different. The strong connection between occupancy numbers (7a) and 
their correlation partners (7b) makes the kernel a determinant, the size of which equals 
the number of independent bonding parameters. For the simple system (18) two occupancy 
numbers Go* are enough, and thus the self-oscillatory condition has been expressed through 
the 2 x 2 matrixes (29), (30) and (21). 

In search of experimental evidence of the correlation oscillations, some Si( 11 1) dangling- 
bond surface spectra were studied. The wide-dispersion energy-loss peak (1-1.8 eV 
through the Brillouin zone) from Si(l11)7 x 7 has been explained by excitation of 
correlation oscillations in a narrow-band strongly correlated system. This explanation agrees 
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quantitatively with the HEELS data and eliminates the contradiction between the HREELS 
and the ARUPS interpretations. 

The theory presented may be of use in the experimental study of strongly correlated 
systems. For example, values of the bonding parameters and their wavevector dependence 
may be ‘tested’ by calculation and observation of w,(q), giving information about 
equilibrium state ordering, The critical behaviour of correlation oscillations, found in 
calculations of ucor(q) for the single-band system with translationally invariant paramagnetic 
ground state, ‘goes in parallel’ with the interpretation of ARUPS data about Si(ll1)l x 1 
7 x 7 reconstruction transitions on the basis of a single-parameter Hubbard model. 
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Appendix. Rules of summation over degenerate one-electron spectrum in (25) and (33) 

We reserve indices i and j for two degenerate energies (ZZ), index m for two non-degenerate 
ones, and index t for all energies: 

~ d k )  # Em(k). 

A pair of terms (ith and jth) in sum E, in (25) must be changed by a single term as 
follows: 

(AI) 

If degeneracy occurs in only one of the points k or (k+q) ,  then a pair of terms in sum 
Cm or in C,, of (33) must be treated according to the rule (Al). If both k and (k + 4) 
points are degenerate, then (AI) must be applied twice: 
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with 

E, = E,(k) E;, = E,r(k + q). 

It may be noted that the problem of summation over the degenerate one-eleceon 
spec!", solved by (AI) and (M), can be by-passed in computational practice. To decide 
the task of self-consistent definition of Go* and LL (23)-(25), or to find wm(q) from (31a), 
one does not need frequency sums (236) or (31b) themselves. If summation over the 
Brillouin zone in (23a) and (31a) is performed by the net of k-points, then one may simply 
exclude those points in which formulae (25) and (33) must be treated according to (AI) or 
(AZ). The error of such a simplification can be made small by increasing the density of the 
k-point net (Moliver 1991). 
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